


ANOVA 
for comparing means between 
more than 2 groups 



Hypotheses of One-Way ANOVA 
   

 All population means are equal  

 i.e., no treatment effect (no variation in means among 

groups) 
 

   

 At least one population mean is different  

 i.e., there is a treatment effect  

 Does not mean that all population means are different 

(some pairs may be the same)  
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The F-distribution 
 A ratio of variances follows an F-distribution:  
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The F-test tests the hypothesis that two variances 

are equal.  

F will be close to 1 if sample variances are equal.  
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ANOVA Table 

Between  

(k groups)  

k-1  SSB 
(sum of squared 

deviations of group 

means from grand 

mean)  

 

SSB/k-1  Go to 

Fk-1,nk-k 

chart  

Total 

variation 

 

nk-1  TSS 

(sum of squared deviations of 

observations from grand mean)   
 

  

 

Source of 

variation 

 

  

 

 

d.f. 

 

  

 

Sum of 

squares 
 

 

Mean Sum 

of Squares 

 

 

 

 

F-statistic 

 

 

 

 

p-value 

 

Within 
(n individuals per 

group) 

 

nk-k 

 

SSW  
 (sum of squared 

deviations of 

observations from 

their group mean)   

 

s2=SSW/nk-k  

knk
SSW

k
SSB



1

TSS=SSB + SSW 
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Step 1) calculate the sum 
of squares between groups: 

  

Mean for group 1 = 62.0 

Mean for group 2 = 59.7 

Mean for group 3 = 56.3 

Mean for group 4 = 61.4 

  

Grand mean= 59.85  

 
SSB = [(62-59.85)2 + (59.7-59.85)2 + (56.3-59.85)2 + (61.4-59.85)2 ] xn per 

group= 19.65x10 = 196.5  
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Step 2) calculate the sum 
of squares within groups: 

  

(60-62) 2+(67-62) 2+ (42-62) 

2+ (67-62) 2+ (56-62) 2+ (62-
62) 2+ (64-62) 2+ (59-62) 2+ 
(72-62) 2+ (71-62) 2+ (50-
59.7) 2+ (52-59.7) 2+ (43-
59.7) 2+67-59.7) 2+ (67-
59.7) 2+ (69-59.7) 

2…+….(sum of 40 squared 
deviations)  = 2060.6 



Step 3) Fill in the ANOVA table 
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196.5 

 
65.5 

 

1.14 

 

.344 

 

36 

 

2060.6 

 

57.2 

 

  

 

 

Source of variation 

 

  

 

 

d.f. 

 

  

 

 

Sum of squares 

 

  

 

 

Mean Sum of 

Squares 
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p-value 

 

Between 

 

Within 

 

Total 
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INTERPRETATION of ANOVA:  

How much of the variance in height is explained by treatment group? 

R2=“Coefficient of Determination” = SSB/TSS = 196.5/2275.1=9% 



Coefficient of Determination 

SST

SSB

SSESSB

SSB
R 


2

The amount of variation in the outcome variable (dependent 
variable) that is explained by the predictor (independent variable). 



Beyond one-way ANOVA 
 Often, you may want to test more than 1 treatment.  

ANOVA can accommodate more than 1 treatment or 
factor, so long as they are independent.  Again, the 
variation partitions beautifully! 

  

TSS = SSB1 +  SSB2   + SSW      

  

 


